國立成功大學一〇一學年度 內學者試 高等微積分 試題 共1頁

注意事項:作答時請務必在所屬答案卷上作答並標明題號。

101.05.08

Advanced Calculus

1. Bolzano-Weierstrass Theorem

- (a) (15) Show the \mathbb{R}^n version of this theorem.
- (b) (10) Show that the assumption " \mathbb{R}^n " is essential.

2. Norms

(a) (15) Show that all norms in \mathbb{R}^n are equivalent.

(b) (10) Show that the assumption " \mathbb{R}^n " is essential.

3. Compactness

(25) Let S be a subset of a metric space. Then S is compact if and only if every sequence in S contains a convergent subsequence in S.

4. Series

- (a) (15) If the series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then every rearrangement of it also converges to the same value.
- (b) (10) Show that the assumption of absolute convergence is essential.

- 16 Pts 1. Let V and W be finite dimensional vector spaces over the field F. Let $L : V \to W$ be a linear map. Prove that the dimension of the kernel of L plus the dimension of the image of L is equal to the dimension of V.
- 16 Pts 2. In each of the following cases decide whether there is a linear map $T : \mathbb{R}^2 \to \mathbb{R}^3$ such that the following holds:

(a)
$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}-2\\1\\0\end{bmatrix}, T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\4\\2\end{bmatrix}, \text{ and } T\left(\begin{bmatrix}2\\1\end{bmatrix}\right) = \begin{bmatrix}3\\3\\3\end{bmatrix}$$

(b) $T\left(\begin{bmatrix}3\\4\end{bmatrix}\right) = \begin{bmatrix}-2\\1\\0\end{bmatrix} \text{ and } T\left(\begin{bmatrix}2\\3\end{bmatrix}\right) = \begin{bmatrix}3\\4\\2\end{bmatrix}$

In case such a linear map T exists, determine its matrix with respect to the standard basis of \mathbb{R}^2 and with respect to the standard basis of \mathbb{R}^3 . If no such a linear map T exists, explain why it is so.

- 20 Pts 3. Let F be a field and V the vector space F^2 . Let $T: V \to V$ be a linear operator. A vector $\alpha \in V$ is said to be a cyclic vector for T if $\{T^i \alpha \mid i = 0, 1, 2...\}$ spans V.
 - (a) Prove that any nonzero vector of V which is not a eigenvector for T is a cyclic vector for T.
 - (b) Prove that either T has a cyclic vector or T is a scalar multiple of the identity operator.
- 16 Pts 4. Let S be a subspace of a finite dimensional inner product space V over either \mathbb{R} or \mathbb{C} . Prove that each coset in V/S contains exactly one vector that is orthogonal to S.
- 16 Pts 5. Let M be an $n \times n$ with real entries, $n \ge 1$. Suppose that M is unitary, upper triangular, and has positive entries on the main diagonal. Prove that M is the identity matrix
- 16 Pts 6. A square matrix N over a field is said to be *nilpotent* if $N^k = 1$ for some $k \ge 0$. Let N_1 and N_2 be 3×3 nilpotent matrices over the field F. Prove that N_1 and N_2 are similar if and only if they have the same minimal polynomial.

Total number of points: 100

國立成功大學一〇一學年度 博士班 實變數函數論 試題 共1頁

注意事項:作答時請務必在所屬答案卷上作答並標明題號。 101.05.08

Real Analysis

PhD Entrance Exam

May 8, 2012

1. (8 points) Compute the limit

$$\lim_{n\to\infty}\int_0^\infty \frac{n\cos x}{1+n^2x^{3/2}}dx.$$

2. (12 points) For $f \in L^{p}(0,\infty)$, $1 \leq p \leq \infty$, define

$$(Tf)(y) = \int_0^\infty (x+y)^2 e^{-(x+y)} f(x) dx \text{ for } y \in (0,\infty).$$

Show that $Tf \in L^p(0,\infty)$ and $||Tf||_p \leq 2 ||f||_p$.

3. (10 points) Suppose μ is a positive measure on X and $f : X \to (0, \infty)$ satisfies $\int_X f d\mu = 1$. Prove, for every $E \subset X$ with $0 < \mu(E) < \infty$, that

$$\int_{E} (\log f) \ d\mu \leq \mu(E) \log rac{1}{\mu(E)}$$

and, when 0 ,

$$\int_{E} f^{p} d\mu \leq \mu \left(E \right)^{1-p}.$$

- 4. (10 points) Suppose $E \subseteq \mathbb{R}$ is measurable with $|E| = \lambda > 0$, where λ is a finite number. Show that for any $0 < t < \lambda$, there exists a subset A of E such that A is measurable and |A| = t. That is, the Lebesgue measure $|\cdot|$ on \mathbb{R} satisfies the Intermediate Value Theorem.
- 5. (10 points) Let f_k and f be (Lebesgue) measurable on a measurable set $E \subset \mathbb{R}^n$, $|E| < \infty$. Then

$$f_k \to f$$
 in measure iff $\int_E \frac{|f_k - f|}{1 + |f_k - f|} dx \to 0$ as $k \to \infty$.

國立成功大學一〇一學年度	博 士 班 入學者試	代數	試題	共1頁
	人生を記			

注意事項:作答時請務必在所屬答案卷上作答並標明題號。	101.05.08
----------------------------	-----------

Algebra Exam May 2012

Show ALL work for full credit.

(1) (10pts) Let p < q be primes with $q \not\equiv p \pmod{p}$. (a) Show that every group of order pq is cyclic.

(b) Let G be a group and H < Z(G), where Z(G) denotes the center of G. Suppose G/H is cyclic. Prove that G is abelian.

(2) (10pts) Let R be a commutative ring with identity. Let $N = \{r \in R : r^n = 0 \text{ for some } n > 0\}.$

(a) Prove N is an ideal.

(b) Suppose N is a maximal ideal of R. Prove that N is the unique maximal ideal of R.

(3) (10pts) Let R be a commutative ring with unity. Suppose the following diagram R-modules commutes

and the rows are exact.

(a) Prove that if f and h are surjective, then g is surjective.

- (b) Prove that if f and h are injective, then g is injective.
- (4) (10pts) Let K be the splitting field of $x^3 2$ over \mathbb{Q} . Compute the Galois group of K over \mathbb{Q} and all the intermediate fields.

(5) (10pts) Let \mathbb{F} be a finite field.

(a) Prove that $|\mathbf{F}| = p^r$ where $p, r \in \mathbb{Z}_+$ with p a prime.

(b) Let $p \in \mathbb{Z}$ be a prime and \mathbb{F}_p the finite field of p elements. Let \mathbb{F} be an extension field of \mathbb{F}_p . Prove that the Galois group $Gal(\mathbb{F}/\mathbb{F}_p)$ is cyclic. (Hint: Consider the Frobenius isomorphism $x \mapsto x^p$)