Advanced Calculus

1．Bolzano－Weierstrass Theorem
（a）（15）Show the \mathbb{R}^{n} version of this theorem．
（b）（10）Show that the assumption $" \mathbb{R}^{n} "$ is essential．
2．Norms
（a）（15）Show that all norms in \mathbb{R}^{n} are equivalent．
（b）（10）Show that the assumption＂ \mathbb{R}^{n}＂is essential．
3．Compactness
（25）Let S be a subset of a metric space．Then S is compact if and only if every sequence in S contains a convergent subsequence in S ．

4．Series
（a）（15）If the scries $\sum_{n=1}^{\infty} a_{n}$ converges absolutcly，then every rear－ rangement of it also converges to the same value．
（b）（10）Show that the assumption of absolute convergence is essential．

Work out all of the following problems with details．

16 Pts 1．Let V and W be finite dimensional vector spaces over the field F ．Let $L: V \rightarrow W$ be a linear map．Prove that the dimension of the kernel of L plus the dimension of the image of L is equal to the dimension of V ．

16 Pts 2．In each of the following cases decide whether there is a linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that the following holds：
（a）$T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right]$ ，and $T\left(\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]$ ？
（b）$T\left(\left[\begin{array}{l}3 \\ 4\end{array}\right]\right)=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$ and $T\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right]$ ？
In case such a linear map T exists，determine its matrix with respect to the standard basis of \mathbb{R}^{2} and with respect to the standard basis of \mathbb{R}^{3} ．If no such a linear map T exists，explain why it is so．

20 Pts 3．Let F be a field and V the vector space F^{2} ．Let $T: V \rightarrow V$ be a linear operator．A vector $\alpha \in V$ is said to be a cyclic vector for T if $\left\{T^{i} \alpha \mid i=0,1,2 \ldots\right\}$ spans V ．
（a）Prove that any nonzero vector of V which is not a eigenvector for T is a cyclic vector for T ．
（b）Prove that either T has a cyclic vector or T is a scalar multiple of the identity operator．
16 Pts 4．Let S be a subspace of a finite dimensional inner product space V over either \mathbb{R} or \mathbb{C} ．Prove that each coset in V / S contains exactly one vector that is orthogonal to S ．

16 Pts 5．Let M be an $n \times n$ with real entries，$n \geq 1$ ．Suppose that M is unitary，upper triangular，and has positive entries on the main diagonal．Prove that M is the identity matrix

16 Pts 6．A square matrix N over a field is said to be nilpotent if $N^{k}=1$ for some $k \geq 0$ ．Let N_{1} and N_{2} be 3×3 nilpotent matrices over the field F ．Prove that N_{1} and N_{2} are similar if and only if they have the same minimal polynomial．

國立成功大學— O —學年度

1．（ 8 points）Compute the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n \cos x}{1+n^{2} x^{3 / 2}} d x
$$

2．（12 points）For $f \in L^{p}(0, \infty), 1 \leq p \leq \infty$ ，define

$$
(T f)(y)=\int_{0}^{\infty}(x+y)^{2} e^{-(x+y)} f(x) d x \text { for } y \in(0, \infty)
$$

Show that $T f \in L^{p}(0, \infty)$ and $\|T f\|_{p} \leq 2\|f\|_{p}$ ．
3．（10 points）Suppose μ is a positive measure on X and $f: X \rightarrow(0, \infty)$ satisfies $\int_{X} f d \mu=1$ ．Prove，for every $E \subset X$ with $0<\mu(E)<\infty$ ，that

$$
\int_{E}(\log f) d \mu \leq \mu(E) \log \frac{1}{\mu(E)}
$$

and，when $0<p<1$ ，

$$
\int_{E} f^{p} d \mu \leq \mu(E)^{1-p}
$$

4．（10 points）Suppose $E \subseteq \mathbb{R}$ is measurable with $|E|=\lambda>0$ ，where λ is a finite number． Show that for any $0<t<\lambda$ ，there exists a subset A of E such that A is measurable and $|A|=t$ ．That is，the Lebesgue measure $\|$ on \mathbb{R} satisfies the Intermediate Value Theorem．
5．（10 points）Let f_{k} and f be（Lebesgue）measurable on a measurable set $E \subset \mathbb{R}^{n}$ ， $|E|<\infty$ ．Then

$$
f_{k} \rightarrow f \text { in measure iff } \int_{E} \frac{\left|f_{k}-f\right|}{1+\left|f_{k}-f\right|} d x \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

Show ALL work for full credit．
（1）（10pts）Let $p<q$ be primes with $q \not \equiv p(\bmod p)$ ．
（a）Show that every group of order $p q$ is cyclic．
（b）Let G be a group and $H<Z(G)$ ，where $Z(G)$ denotes the center of G ． Suppose G / H is cyclic．Prove that G is abelian．
（2）（ 10 pts ）Let R be a commutative ring with identity．Let $N=\left\{r \in R: r^{n}=\right.$ 0 for some $n>0\}$ ．
（a）Prove N is an ideal．
（b）Suppose N is a maximal ideal of R ．Prove that N is the unique maximal ideal of R ．
（3）（10pts）Let R be a commutative ring with unity．Suppose the following dia－ gram R－modules commutes

and the rows are exact．
（a）Prove that if f and h are surjective，then g is surjective．
（b）Prove that if f and h are injective，then g is injective．
（4）（10pts）Let K be the splitting field of $x^{3}-2$ over \mathbb{Q} ．Compute the Galois group of K over \mathbb{Q} and all the intermediate fields．
（5）（10pts）Let \mathbb{F} be a finite field．
（a）Prove that $|\mathbb{F}|=p^{r}$ where $p, r \in \mathbb{Z}_{+}$with p a prime．
（b）Let $p \in \mathbb{Z}$ be a prime and \mathbb{F}_{p} the finite field of p elements．Let \mathbb{F} be an extension field of \mathbb{F}_{p} ．Prove that the Galois group $\operatorname{Gal}\left(\mathbb{F} / \mathbb{F}_{p}\right)$ is cyclic．（Hint： Consider the Frobenius isomorphism $x \mapsto x^{p}$ ）

