成功大學 100 學年度博士班研究生甄試入學考試

【高等微積分】

1．Suppose that $x \in R, x_{n} \geq 0$ ，and $x_{n} \rightarrow x$ as $n \rightarrow \infty$ ．Prove that $\sqrt{x_{n}} \rightarrow \sqrt{x}$ as $n \rightarrow \infty$ ．

2．Suppose that I is a closed，bounded interval of R and $f: I \rightarrow R$ is continuous on I ．Please prove that f is uniformly continuous on I ．

3．Let

$$
u(x, t)=\frac{e^{-x^{2} / 4 t}}{\sqrt{4 \pi t}}, \quad t>0, x \in R
$$

（a）Prove that u satisfies the heat equation：$u_{x x}-u_{t}=0$ for all $t>0$ and $x \in R$ ．
（b）If $a>0$ ，prove that $u(x, t) \rightarrow 0$ as $t \rightarrow 0+$ ，uniformly for $x \in[a, \infty)$ ．

4．Please compute the following integrals．
（a） $\int_{0}^{1} \int_{0}^{1} \sqrt{x y+x} d x d y$ ．
（b） $\int_{0}^{\pi / 2} e^{x} \sin x d x$ ．

5．Determine whether the following series converges or diverges．
（a）$\sum_{k=1}^{\infty} \frac{\log k}{k^{p}}, p>1$.
（b）$\sum_{k=1}^{\infty} \frac{9 k^{2}+3}{k^{3}-2 k+1}$ ．

6．Let A and B be subsets of R^{n} ．Prove that

$$
\partial(A \cap B) \subseteq(A \cap \partial B) \cup(B \cap \partial A) \cup(\partial A \cap \partial B)
$$

7．Evaluate the following expression：

$$
\frac{d}{d y} \int_{-1}^{1} \sqrt{x^{2} y^{2}+x y+y+2} d x \text { at } y=0
$$

成功大學 100 學年度博士班研究生甄試入學考試

Linear Algebra
PhD Entrance Exam
Date：28／10／2010
Work out all problems and no credit will be given for an answer without reason－ ing．

1．（a）（5\％）Let V be the vector space of n－square matrices over K ．Let M be an arbitrary matrix in V ．Let $T: V \rightarrow V$ be defined by $T(A)=A M+M A$ ，where $A \in V$ ．Show that T is a linear transformation．
（b）（5\％）Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear mapping defined by

$$
T(x, y, z)=(x+2 y-z, y+z, x+y-2 z)
$$

Find a basis and the dimension of the kernel W of T ．What is the dimension of the image U of T ？
（c）（5\％）Show that no matrices A and $B \in M_{n \times n}(F)$ such that $A B-B A=I$ ，where I is an $n \times n$ identity matrix．

2．（a）(5%) Show that if A is a self－adjoint matrix，then all eigenvalues of A are real．
（b）(10%) Let V be the vector space of n－square matrices over a field \mathbb{R} ．Let U and W be the subspaces of symmetric and skew－symmetric matrices，respectively．Show that $V=U \oplus W$ ．

3．（a）(7%) Let

$$
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right]
$$

Find A^{n} ．
（b）(8%) Find $\operatorname{det}\left(A^{-1}\right)$ for

$$
A=\left[\begin{array}{ccccc}
1+x_{1} & x_{2} & x_{3} & \ldots & x_{n} \\
x_{1} & 1+x_{2} & x_{3} & \ldots & x_{n} \\
x_{1} & x_{2} & 1+x_{3} & \ldots & x_{n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{1} & x_{2} & x_{3} & \ldots & 1+x_{n}
\end{array}\right] .
$$

4．Let

$$
A=\left[\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right]
$$

（a）(5%) Find the characteristic polynomial of A ．
（b）(5%) Find the minimal polynomial of A ．
（c）(5%) Find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix．
5. (a) (7%) Let T be a linear operator on a finite dimensional imner product space V. Show that there exists a unique linear operator T^{*} on V such that $\langle T(u), v\rangle=$ $\left\langle u, T^{*}(v)\right\rangle$, for every $u, v \in V$.
(b) (8%) Let V be a finite-dimensional inner product space, and let E be an idmpotent linear operator on V, i.e., $E^{2}=E$. Prove that E is self-adjoint if and only if $E E^{*}=E^{*} E$.
6. (10%) Let V be a finite dimensional vector space over a field F^{*}. Let V^{*} and $V^{* *}$ be the dual and double dual space of V. Define $\Phi: V \rightarrow V^{* *}$ by

$$
\Phi(x)(f)=f(x) \quad \text { for all } x \in V, f \in V^{*} .
$$

Show that Φ is an isomorphism of V onto $V^{* *}$.
7. Let G be a group. A subgroup H of G is called a normal subgroup of G if $a H=H a$ for all a in G. Let G^{\prime} be the subgroup of G generated by the set $S=\left\{x^{-1} y^{-1} x y \mid x, y \in G\right\}$.
(a) (5%) Prove that G^{\prime} is normal in G.
(b) (5%) Prove that G / G^{\prime} is Abelian.
(c) (5%) Prove that if H is a subgroup of G and $G^{\prime} \leq H$, then H is normal in G and G / H is Abelian.

