注意事項：作答時請務必在所屈答案卷上作答並標明题號。

1．Let the sequence $\left\{a_{n}\right\}$ be given recursively by the formula

$$
\left\{\begin{array}{l}
a_{1}=2 \\
a_{n+1}=\left(2 a_{n}+4\right) / 3
\end{array}\right.
$$

Show that $\left\{a_{n}\right\}$ is monotone increase and bounded above．（15 points）
2．Show that the function

$$
f(x)=\int_{0}^{1 / x} \frac{1}{1+t^{2}} d t-\int_{x}^{0} \frac{1}{1+t^{2}} d t
$$

is constant for $x>0$ ．（ 15 points）
3．Prove that

$$
\left|\int_{0}^{1} x \cdot \sin (1 / x) d x\right| \leq\left(\int_{0}^{1}\left(x^{2} \cdot \sin ^{2}(1 / x) d x\right)^{1 / 2}\right.
$$

（Hint：$\left(\sum a_{k} b_{k}\right)^{2} \leq \sum a_{k}^{2} \sum b_{k}^{2}$ ．）（15 points）
4．Let f be continuous on the interval $[0, b]$ where $f(x)+f(b-x) \neq 0$ on $[0, b]$ ．Show that

$$
\int_{0}^{b} \frac{f(x)}{f(x)+f(b-x)} d x=\frac{b}{2} .
$$

（15 points）
5．Suppose that $f: \mathrm{R} \rightarrow \mathrm{R}$ is continuous and satisfies

$$
f^{2}(t)=2 \int_{0}^{t} f(s) d s
$$

for $t>0$ ．Show that either $f \equiv 0$ or there is a $t_{0} \geq 0$ such that

$$
f(t)=\left\{\begin{array}{l}
t-t_{0}, \quad t \geq t_{0} \\
0, \quad 0 \leq t \leq t_{0}
\end{array}\right.
$$

（20 points）
6．Let $f(x)$ be bounded and continuous on $[0, \infty)$ ．Let

$$
F(t)=\int_{0}^{\infty} \frac{t f(x)}{t^{2}+x^{2}} d x
$$

Find $\lim _{t \rightarrow 0^{+}} F(t) . \quad$（20 points）

Time 9：50－11：00

Let \mathbb{N}, \mathbb{R} and \mathbb{C} denote the set of positive integers，real numbers and complex numbers，repectively．
1．（ 10% ）Let A be an $n \times m$ matrix with entries in \mathbb{R} and let I_{m} denote the $m \times m$ identity matrix． Prove that there is an $m \times n$ matrix B such that $B A=I_{m}$ if and only if the rank of the matrix A is m ．

2．（15\％）Let V and W be finite－dimensional vector spaces over \mathbb{R} and $T: V \rightarrow W$ be a linear transformation．Let V^{*} and W^{*} denote the dual spaces of the vector spaces V and W ，and let $T^{*}: W^{*} \longrightarrow V^{*}$ be a linear transformation defined by $T^{*}(f)=f \circ T$ ．Prove that $T: V \rightarrow W$ is onto if and only if $T^{*}: W^{*} \rightarrow V^{*}$ is one－to－one．

3．（30\％）Let W be a subspace of the set of functions from \mathbb{R} to \mathbb{R} spanned by the set $\mathscr{B}=$ $\left\{1, \mathrm{e}^{x}, x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}\right\}$ ．Let $T: W \longrightarrow W$ be a linear transformation defined by

$$
T(f)(x)=\frac{d}{d x} f(x)-f(x) .
$$

（a）（10\％）Show that $\mathscr{B}=\left\{1, \mathrm{e}^{x}, x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}\right\}$ is a linear independent set．
（b）（5\％）Find the matrix representation of T with respect to the basis \mathscr{B} ．
（c）(5%) Find the matrix representation of T^{2} with respect to the basis \mathscr{B} ．
（d）(5%) Find a basis for the kernel of T^{2} ．
（e）（5\％）Find a basis for the image of T^{2} ．
4．(25%)
（a）（ 15% ）Let V be a finite dimensional vector space over \mathbb{R} with an inner product \langle,$\rangle ．Let$ $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ be an orthonormal basis for a subspace W of V with $k \in \mathbb{N}$ ．For $v \in V$ ， we let $\|v\|=\sqrt{\langle v, v\rangle}$ ．Fix a vector $u \in V$ and define $d=\inf \{\|u-w\| \in \mathbb{R} \mid w \in W\}$ ．Prove that $d=\left\|u-\left\langle u, w_{1}\right\rangle w_{1}-\left\langle u, w_{2}\right\rangle w_{2} \cdots-\left\langle u, w_{k}\right\rangle w_{k}\right\|$ ．
（b）(10%) Find $\alpha, \beta \in \mathbb{R}$ so that

$$
\int_{0}^{\pi}(\cos x-\alpha x-\beta)^{2} d x \leq \int_{0}^{\pi}(\cos x-a x-b)^{2} d x, \quad \text { for all } a, b \in \mathbb{R}
$$

5．（20\％）Let V be a finite dimensional vector space over \mathbb{C} with the hermitian inner product \langle,$\rangle ．Let \mathscr{B}=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be an orthonormal basis for V ．Let $T: V \longrightarrow V$ be a linear transformation such that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \cdots, T\left(v_{n}\right)\right\}$ is also an orthonormal basis for V ．
（a）(5%) Show that $\langle T(v), T(w)\rangle=\langle v, w\rangle$ for all $v, w \in V$ ．
（b）（5\％）Show that if $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ is any orthonormal basis for the vector space V ，then $\left\{T\left(w_{1}\right), T\left(w_{2}\right), \cdots, T\left(w_{n}\right)\right\}$ is also an orthonormal basis for V ．
（c）（10\％）Show that $T T^{*}=T^{*} T=i d_{V}$ ，where $i d_{V}$ is the identity map of V and T^{*} is the adjoint operator with respect to the hermitian inner product．

國立成功大學—OO學年度

1．（10 points）Let f be a simple function，taking its distinct values a_{1}, \ldots, a_{N} on disjoint sets $E_{1} \ldots, E_{x}$ ，respectively．Show that $f(x)=\sum_{i=1}^{N} a_{i} \varkappa_{E_{i}}(x)$ is measurable on $E=\cup_{i=1}^{N} E_{i}$ if and only if E_{1}, \ldots, E_{N} are measurable．

2．（10 points）Let $f: E \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be a nonnegative measurable function such that $\int_{E} f<\infty$ ． Show that for any $\varepsilon>0$ there exists $\delta>0$ such that for any measurable subset $E_{1} \subset E$ with $\left|E_{1}\right|<\delta$ we have $\int_{E_{1}} f<\varepsilon$ ．
Hint：For each $k=1,2, \ldots$, and $x \in E$ ，define the function $f_{k}(x)= \begin{cases}f(x) & \text { if } f(x)<k, \\ k & \text { if } f(x) \geq k\end{cases}$
Note that the sequence $0 \leq f_{k}(x) \nearrow f(x)$ on E ．
3．（10 points）Let $f(x, y), 0 \leq x, y \leq 1$ ，satisfy the following conditions：for each $x, f(x, y)$ is an integrable function of y ，and $(\partial f(x, y) / \partial x)$ is a bounded function of (x, y) ．Show that $(\partial f(x, y) / \partial x)$ is a measurable function of y for each x and

$$
\frac{d}{d x} \int_{0}^{1} f(x, y) d y=\int_{0}^{1} \frac{\partial}{\partial x} f(x, y) d y
$$

Hint：For each $n=1,2, \ldots$ ，define $F_{n}(x, y)=\frac{f\left(x+\frac{1}{n}, y\right)-f(x, y)}{\frac{1}{n}}$ ，and determine $\lim _{n \rightarrow \infty} F_{n}(x, y)$ ．
4．（10 points）Let $\phi(x), x \in \mathbb{R}^{n}$ be a bounded measurable function such that $\phi(x)=0$ for $|x| \geq 1$ and $\int \phi=1$ ．For $\epsilon>0$ ，let $\phi_{\epsilon}(x)=\epsilon^{-n} \phi(x / \epsilon)$ ．If $f \in L\left(\mathbb{R}^{n}\right)$ ，show that

$$
\lim _{\epsilon \rightarrow 0}\left(f * \phi_{\epsilon}\right)(x)=f(x)
$$

at each Lebesgue point x of f ，i．e．x is a point at which

$$
\lim _{Q \backslash x} \frac{1}{|Q|} \int_{Q}|f(y)-f(x)| d y=0 \text { is valid. }
$$

Hint：Note that $\lim _{\epsilon \rightarrow 0}\left(f * \phi_{\epsilon}\right)(x)=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{n}} f(x-y) \phi_{\varepsilon}(y) d y$ and $f(x)=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{n}} f(x) \phi_{\varepsilon}(y) d y$
5．（10 points）Let $f,\left\{f_{k}\right\} \in L^{p}$ ．Show that if $\left\|f-f_{k}\right\|_{p} \rightarrow 0$ ，then $\left\|f_{k}\right\|_{p} \rightarrow\|f\|_{p}$ ．Conversely，if $f_{k} \rightarrow f$ a．e．and $\left\|f_{k}\right\|_{p} \rightarrow\|f\|_{p}, 1 \leq p<\infty$ ，show that $\left\|f-f_{k}\right\|_{p} \rightarrow 0$ ．
Hint：For the converse，you may use the following inequality and apply Fatou＇s lemma．

$$
2^{p}|f|^{p}+2^{p}\left|f_{k}\right|^{p}-\left|f-f_{k}\right|^{p} \geq 0
$$

博士班

入學考試

Work out all of the problems and show details of your works．

1．Let p be a prime number and n a positive integer．
（b）Give a list of representatives for the conjugacy classes of elements of order 6 in S_{7} ．
3．Let $f: R \rightarrow S$ be a homomorphism of rights with kernel K and image I ．
（b）Show that if L is a subring of S ，then $f\left(f^{-1}(L)\right)=I \cap L$ ．
4．Let F be a field extension of the rational numbers．
（a）Show that the set $\{a+b \sqrt{2} \mid a, b \in F\}$ is a field．
［6\％］
（a）Prove that any two groups of order p are isomorphic．
（b）Show that if G is a group of order p^{n} ，then G has an element of order p ．
（c）Show that if G is a group of order p^{2} ，then G is abelian．
2．（a）Find the centralizers in S_{7} of the permutation $\sigma=(123)(4567)$ ．
（a）Show that if N is a subring of R ，then $f^{-1}(f(N))=K+N$ ．
（b）Give necessary and sufficient conditions for the set $L=\{a+b \sqrt[3]{2} \mid a, b \in F\}$ to be a field．

