Calculus Exam

April 25, 2015

Name: \qquad Department: \qquad
Student ID number: \qquad

Instructions:

1. There are 9 pages (including the cover page) in this exam.
2. You have $\mathbf{1 0 0}$ minutes to work on the exam.
3. Write your answers above the answer line, if an answer line is provided.
4. The computation processes/proofs of each problem is required. An answer without any explanations will not be graded.

Problem	Points	Score
1	10	
2	15	
3	10	
4	20	
5	15	
6	10	
7	10	
8	10	
Total	100	

1. Evaluate the following integrals.
(a) (5 points)

$$
\int_{1}^{2} \ln x d x=
$$

(a)
(b) (5 points)

$$
\int_{0}^{\frac{1}{4}} \frac{d x}{\sqrt{1-4 x^{2}}}=
$$

(b)
2. Let

$$
F(\theta)=\frac{1}{\frac{1}{2} \sin \theta+\cos \theta}, 0 \leq \theta \leq \frac{\pi}{2}
$$

(a) (5 points) Find the critical point $\hat{\theta}$ of $F(\theta)$, i.e. solve $F^{\prime}(\theta)=0$ for θ.
(a)
(b) (5 points) Find the relative/local extreme values of $F(\theta)$ in $\left(0, \frac{\pi}{2}\right)$ and justify your answer.
(b)
(c) (5 points) Find the absolute extreme values of $F(\theta)$ in $\left[0, \frac{\pi}{2}\right]$.
(c)
3. Let S be the region bounded by $y=\sin x, x=\frac{\pi}{2}$, and $y=0$.
(a) (5 points) Find the volume of the solid obtained by rotating S about the x-axis.
(a)
(b) (5 points) Find the volume of the solid obtained by rotating S about the y-axis.
(b)
4. Let

$$
F(x)=\int_{0}^{x} 3^{t} d t
$$

(a) (5 points) Prove that $F(x)$ is strictly increasing.
(b) (5 points) Find the indefinite integral

$$
\int 3^{t} d t=
$$

(b)
(c) (5 points) Find $F^{-1}\left(\frac{2}{\ln 3}\right)$, i.e. solve $F(x)=\frac{2}{\ln 3}$ for x .
(c)
(d) (5 points) Find $\left(F^{-1}\right)^{\prime}\left(\frac{2}{\ln 3}\right)$.

Hint: Use the chain rule $F^{\prime}\left(F^{-1}(x)\right) \cdot\left(F^{-1}\right)^{\prime}(x)=1$, and plug $x=\frac{2}{\ln 3}$ into this equation.
(d)
5. Let

$$
f(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right),-1<x<1 .
$$

(a) (5 points) Find $f^{\prime}(x)$.
(a) \qquad
(b) (5 points) Find the Taylor series of $f^{\prime}(x)$ at $x=0$.
(b)
(c) (5 points) Find the Taylor series of $f(x)$ at $x=0$.
(c)
6. (10 points) Determine whether the following series is convergent and justify your answer.

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln n}
$$

Hint: Compute the following improper integral

$$
\int_{2}^{\infty} \frac{d x}{x \ln x}
$$

7. (10 points) Prove that for all $x>y>0$,

$$
\sqrt{1+x}-\sqrt{1+y}<\frac{1}{2}(x-y) .
$$

8. Let

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) (3 points) Determine whether $f(x)$ is continuous at $x=0$ and justify your answer.
(b) (7 points) Determine whether $f(x)$ is differentiable at $x=0$ and justify your answer.
Hint: Use the L'Hospital's rule 。

