National Cheng Kung University Calculus Exam

April 25, 2015

No ma or	Dementers and
Name:	Department:

Student ID number:_____

Instructions:

1. There are 9 pages (including the cover page) in this exam.

2. You have **100 minutes** to work on the exam.

3. Write your answers above the answer line, if an answer line is provided.

4. The computation processes/proofs of each problem is required. An answer without any explanations will not be graded.

Problem	Points	Score
1	10	
2	15	
3	10	
4	20	
5	15	
6	10	
7	10	
8	10	
Total	100	

- 1. Evaluate the following integrals.
 - (a) (5 points)

 $\int_{1}^{2} \ln x \, dx =$

(a) _____

(b) (5 points)

$$\int_{0}^{\frac{1}{4}} \frac{dx}{\sqrt{1-4x^{2}}} =$$

(b) _____

2. Let

$$F(\theta) = \frac{1}{\frac{1}{2}\sin\theta + \cos\theta}, \ 0 \le \theta \le \frac{\pi}{2}.$$

(a) (5 points) Find the critical point $\hat{\theta}$ of $F(\theta)$, i.e. solve $F'(\theta) = 0$ for θ .

(a) _____

(b) (5 points) Find the relative/local extreme values of $F(\theta)$ in $(0, \frac{\pi}{2})$ and justify your answer.

(b) _____

(c) (5 points) Find the absolute extreme values of $F(\theta)$ in $[0, \frac{\pi}{2}]$.

(c) _____

- 3. Let S be the region bounded by $y = \sin x$, $x = \frac{\pi}{2}$, and y = 0.
 - (a) (5 points) Find the volume of the solid obtained by rotating S about the x-axis.

(a) _____

(b) (5 points) Find the volume of the solid obtained by rotating S about the y-axis.

(b) _____

4. Let

$$F(x) = \int_0^x 3^t \, dt.$$

(a) (5 points) Prove that F(x) is strictly increasing.

(b) (5 points) Find the indefinite integral

$$\int 3^t dt =$$

(b) _____

(c) (5 points) Find $F^{-1}(\frac{2}{\ln 3})$, i.e. solve $F(x) = \frac{2}{\ln 3}$ for x.

(c) _____

(d) (5 points) Find $(F^{-1})'(\frac{2}{\ln 3})$. Hint: Use the chain rule $F'(F^{-1}(x)) \cdot (F^{-1})'(x) = 1$, and plug $x = \frac{2}{\ln 3}$ into this equation.

(d) _____

5. Let

$$f(x) = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right), \ -1 < x < 1.$$

(a) (5 points) Find f'(x).

(a) _____

(b) (5 points) Find the Taylor series of f'(x) at x = 0.

(b) _____

(c) (5 points) Find the Taylor series of f(x) at x = 0.

(c) _____

6. (10 points) Determine whether the following series is convergent and justify your answer.

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

Hint: Compute the following improper integral

$$\int_{2}^{\infty} \frac{dx}{x \ln x}$$

7. (10 points) Prove that for all x > y > 0,

$$\sqrt{1+x} - \sqrt{1+y} < \frac{1}{2}(x-y).$$

 $8. \ Let$

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

(a) (3 points) Determine whether f(x) is continuous at x = 0 and justify your answer.

(b) (7 points) Determine whether f(x) is differentiable at x = 0 and justify your answer. Hint: Use the L'Hospital's rule \circ