Name：

Part I．（30\％）Multiple－Choice Questions（Select one or more answer choices each question）

1．Which of the following limit is 1 ？
（A） $\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}$
（B） $\lim _{x \rightarrow 0} \frac{\sec x-1}{x}$
（C） $\lim _{x \rightarrow 0} \frac{\tan ^{2} x}{x^{2}}$
（D） $\lim _{x \rightarrow 0} e^{-x^{2}}$
（E） $\lim _{x \rightarrow 0^{+}} \ln x$

Answer：

2．Which of the following is asymptote of the graph $y=\frac{x+2}{\sqrt{x^{2}-9}}$ ？
（A）$x=3$
（B）$x=-3$
（C）$x=-2$
（D）$y=1$
（E）$y=0$

Answer：

3．Which of the following function is differentiable everywhere？
（A）$f(x)=|x|$
（B）$f(x)=\sqrt[3]{1+e^{\cos x}}$
（C）$f(x)=\int_{0}^{\cos x} t \arcsin t d t$
（D）$f(x)=\left\{\begin{array}{lll}x^{3}, & \text { if } & x \leq 1 \\ 3 x-2, & \text { if } & x>1\end{array}\right.$
（E）$f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}$

Answer：

4．Let $a=\arccos (-0.7)$ ．Which of the following is positive number？
（A）a
（B） $\tan a$
（C） $\sec a$
（D） $\cos (2 a)$
（E） $\ln |\csc a|$

Answer：

5．Which of the following series is converged？
（A）$\sum_{n=2}^{\infty} n^{-\pi}$
（B）$\sum_{n=2}^{\infty} n \pi^{-n}$
（C）$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
（D）$\sum_{n=2}^{\infty}(-1)^{n} n \sin \left(\frac{1}{n}\right)$
（E）$\sum_{n=2}^{\infty} \frac{e^{n}}{n!}$

Answer：

6．Let $0 \leq a<b, f^{\prime}:[a, b] \rightarrow \mathbb{R}$ be continuous function and $f(x)>0$ on $[a, b]$ ， let Ω be theregion between $y=f(x), x=a, x=b$ and $y=0$ ．Which of the following statement is always right？
（A）The length of the graph f is given by $\int_{a}^{b} \sqrt{x^{2}+[f(x)]^{2}} d x$ ．
（B）The area of the surface generated by revolving the curve f about the x－axis is given by $\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$ ．
（C）The area of the surface generated by revolving the curve f about the y－axis is given by $\int_{a}^{b} 2 \pi x \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$ ．
（D）The volumn of the solid generated by revolving Ω about the x－axis is given by $\int_{a}^{b} 2 \pi f(x) d x$ ．
（E）The volumn of the solid generated by revolving Ω about the x－axis is given by $\int_{a}^{b} \pi[f(x)]^{2} d x$ ．

Answer：

Part II．
1．(10%) Find the minimum distance between the point $(1,1)$ to the parabola $y=2 x^{2}$ 。

2．（ 8% ）Suppose $-\frac{\pi}{2}<a<b<\frac{\pi}{2}$ ，prove that $\tan b-\tan a \geq b-a$ ．

3．Let

$$
f(x)=\int_{0}^{\frac{1}{x}} \frac{t^{2}}{t^{4}+1} d t+\int_{0}^{x} \frac{1}{t^{4}+1} d t, \quad x \neq 0
$$

a．（4 \％）Find $f^{\prime}(x)$ ．
b．(4%) Find $f(1)+f(-1)$ ．（Hint： $\int \frac{1}{t^{4}+1} d t$ cannot be computed，you should use another method．）
c．(6%) Using above，find $f(3)+f(-2)$ ．

4．（10 \％）Let

$$
f(x)=\frac{\ln x}{x}, \quad x>0 .
$$

a．Find the maximum value of $f(x)$ ．
b．Using above，prove that $\pi^{e}<e^{\pi}$ ．

5．(10%) Find the integral：

$$
\int \sin (\sqrt[3]{x}) d x
$$

6．(8%) Find the limit $\lim _{x \rightarrow 0^{+}} x(\ln x)^{\frac{5}{3}}$ ．

National Cheng Kung University Calculus Exam 共 10 頁／第 10 頁

7．(10%) Let $f(x)=\cos \left(x^{2}\right)$ ．Find $f^{(2014)}(0)$ ．（Hint：Use the Maclaurin series of $\cos x)$

