MIDTERM 2 FOR CALCULUS

Time: 8:15-9:55 AM, Friday, June 1, 2001
No calculator is allowed. No credit will be given for an answer without reasoning.
1.
(i) [5\%] Suppose that $(0,2)$ is a critical point of a function g with continuous second derivatives. Suppose that $g_{x x}(0,2)=-1, g_{x y}(0,2)=2$ and $g_{y y}(0,2)=-8$. Use second derivative test to classify the critical point $(0,2)$.
(ii) [5\%] Find an equation of the tangent plane to the surface $z=e^{x} \ln y$ at the point $(3,1,0)$.
2. [10\%] Let $u=x+a t$ and $v=x-a t$. Then use chain rule to show that any differentiable function of the form

$$
z=f(x+a t)+g(x-a t)
$$

is a solution of the wave equation

$$
\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}
$$

3. $[10 \%]$ Find the directional derivative of the function $g(x, y, z)=z^{3}-x^{2} y$ at the point $(1,6,2)$ in the direction $\mathbf{v}=3 \mathbf{i}+4 \mathbf{j}+12 \mathbf{k}$.
4. [20\%] Find the extreme values of the function $f(x, y)=e^{-x y}$ on the region $x^{2}+4 y^{2} \leq 1$.
5. [10\%] Evaluate

$$
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin (x+y) d y, d x
$$

6. $[10 \%]$ Find the area of the part of the paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=4$.
7. $[10 \%]$ Use triple integral to show that the volume of the solid bounded by a sphere of radius a is $\frac{4}{3} a^{3} \pi$.
8. $[10 \%]$ The average value of a function $f(x, y, z)$ over a solid region E is defined to be

$$
f_{\mathrm{ave}}=\frac{1}{V(E)} \iiint_{E} f(x, y, z) d V
$$

where $V(E)$ is the volume of E. Find the average value of the function $f(x, y, z)=x+y+z$ over the tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$.
9. $[10 \%]$ Evaluate the integral

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y
$$

by reversing the order of integration.

