MIDTERM 1 FOR CALCULUS

Time: 8:10-9:55 AM, Friday, April 20, 2001
No calculator is allowed. No credit will be given for an answer without reasoning.

1. Suppose that $\mathbf{a}=3 \mathbf{i}-2 \mathbf{j}+6 \mathbf{k}$ and $\mathbf{b}=\mathbf{j}-2 \mathbf{k}$. Find
(1) $[2 \%] \mathbf{b} \times-2 \mathbf{a}$,
(2) $[2 \%]\|\mathbf{a}+2 \mathbf{b}\|$,
(3) $[2 \%] \operatorname{proj}_{\mathbf{a}} \mathbf{b}$,
(4) $[2 \%]$ the unit vector in the direction of \mathbf{a},
(5) $[2 \%]$ cos of the angle between \mathbf{a} and \mathbf{b}.
2.

(1) [5%] Find an equation of the plane passes through the point $(1,2,3)$ and contains the line $x=3 t$, $y=1+t, z=2-t$.
(2) [5\%] Find the distance between the two parallel planes: $z=x+2 y+1$ and $3 x+6 y-3 z=4$.
3.
(1) [5\%] Find the acceleration of a particle with the given position function $\mathbf{r}(t)=t^{2} \mathbf{i}+\ln t \mathbf{j}+t \mathbf{k}$.
(2) [5\%] Find the tangential component of the acceleration vector of $\mathbf{r}(t)=e^{t} \mathbf{i}+\sqrt{2} t \mathbf{j}+e^{-t} \mathbf{k}$.
4. Suppose that $\mathbf{r}(t)=\frac{t^{3}}{3} \mathbf{i}+t^{2} \mathbf{j}+2 t \mathbf{k}$.
(1) [5\%] Find the unit normal vector $\mathbf{N}(t)$.
(2) [5\%] Find the curvature κ.
5. $[10 \%]$ Find the area of the shaded region.
6.
(1) [5\%] Find the length of the curve $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ for $0 \leq \theta \leq \pi$.
(2) [5\%] Find an equation of the tangent line to the curve $x=\sin t, y=\sin (\sin t+t)$ at $(0,0)$.
7.
(1) [5\%] Determine the sequence $\left\{\frac{\ln \left(n^{2}\right)}{n}\right\}$ converges or diverges. If it converges, find the limit.
(2) [5\%] How many terms of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$ do we need to add in order to find the sum with error less than 0.01 .
8. $[10 \%]$ Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{(-2)^{n}}{\sqrt{n}}(x+3)^{n} .
$$

9. Let $f(x)=\frac{e^{x}-1}{x}$.
(1) $[5 \%]$ Find the power series representation of f in powers of x.
(2) [5\%] Differentiate the power series in (1) and show that

$$
\sum_{n=1}^{\infty} \frac{n}{(n+1)!}=1
$$

10. [10\%] If $p>1$, evaluate the expression

$$
\frac{1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots}{1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots}
$$

