MIDTERM 2 FOR CALCULUS

Time: 8:10-9:55 AM, Friday, December 15, 2000
Instructor: Shu-Yen Pan
No calculator is allowed. No credit will be given for an answer without reasoning.

1. Find
(1) $[4 \%] \int \frac{1}{x^{2}-4 x+3} d x$.
(2) $[4 \%] \int \frac{1}{x^{2}-4 x+5} d x$.
2. (1) [4\%] Evaluate $\int_{-2}^{1}|2 x+1| d x$.
(2) [4\%] Integrate $\int \tan ^{4} x \sec ^{4} x d x$
3. (1) [4\%] Find f^{\prime} if $f(x)=\left(x^{2}\right)^{x}$.
(2) [4\%] Integrate $\int \operatorname{coth} x d x$.
4. (1) [4\%] Find the exact value of the expression $\sin \left(\cos ^{-1} \frac{3}{5}\right)$.
(2) [4\%] Find the area of the region bounded by the curves $y=20-x^{2}$ and $y=x^{2}-12$.
5. [6\%] Use Newton method with the specified initial approximation $x_{1}=-1$ to find x_{2}, the second approximation to the root of the equation $x^{3}+x+1=0$.
6. [6\%] Suppose that f is differentiable, $f(0)=0, f(1)=1, f^{\prime}(x)>0$ and $\int_{0}^{1} f(x) d x=\frac{1}{4}$. Find the value of the integral $\int_{0}^{1} f^{-1}(y) d y$.
7. [8\%] Let

$$
f(x)=\int_{2}^{x} \sqrt{1+t^{2}} d t
$$

Prove that $f(x)$ has an inverse and find $f^{\prime}(0)$.
8. [8\%] Find the integral $\int_{0}^{2} \frac{x^{2}}{\left(x^{2}+4\right)^{2}} d x$.
9. [8\%] Find the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{2}{n}}+\sqrt{\frac{3}{n}}+\cdots+\sqrt{\frac{n}{n}}\right)
$$

10. [8\%] A fence 3 meters tall runs parallel to a tall building at a distance of 2 meters from the building. What is the length of the shortest ladder that will reach from the ground over the fence to the wall of the building?
11. [8\%] If $x \sin x=\int_{0}^{x^{2}} f(t) d t$, where f is a continuous function, find $f(4)$.
12. [8\%] Find the limit

$$
\lim _{x \rightarrow \infty}\left(1+\frac{3}{x}\right)^{2 x}
$$

13. [8\%] Let f be a function such that f^{\prime} is continuous on $[a, b]$. Prove that

$$
\int_{a}^{b} f(t) f^{\prime}(t) d t=\frac{1}{2}(f(b)-f(a))(f(b)+f(a))
$$

