MIDTERM 1 FOR CALCULUS

Time: 8:10-9:55 AM, Friday, Nov 3, 2000
Instructor: Shu-Yen Pan
No calculator is allowed. No credit will be given for an answer without reasoning.

1. (1) $[5 \%]$ Find the limit $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\sin \theta}$.
(2) [5\%] Find the limit $\lim _{s \rightarrow 16} \frac{4-\sqrt{s}}{s-16}$.
2. (1) [5\%] Find the limit $\lim _{x \rightarrow \infty} \sqrt{\frac{2 x^{2}-1}{x+8 x^{2}}}$.
(2) [5\%] For what value of the constant c is the function

$$
f(x)= \begin{cases}c x+1, & \text { if } x \leq 3 \\ c x^{2}-1, & \text { if } x>3\end{cases}
$$

continuous on $(-\infty, \infty)$?
3. (1) [5\%] Given the graph of $y=f(x)$ below, sketch a graph of $y=f^{\prime}(x)$.
(2) [5\%] Differentiate $f(t)=\tan \left(\sin t^{2}\right)$.
4. (1) [5\%] Suppose that u and v are differentiable functions and that $w=u \circ v$ and $u(0)=1, v(0)=2$, $u^{\prime}(0)=3, u^{\prime}(2)=4, v^{\prime}(0)=5, v^{\prime}(2)=6$. Find $w^{\prime}(0)$.
(2) [5\%] Show that the curves $3 x^{2}+2 x-3 y^{2}=1$ and $6 x y+2 y=0$ are orthogonal.
5. (1) $[5 \%]$ Find an equation of the tangent line to the curve $y=\frac{|x|}{\sqrt{2-x^{2}}}$ at the point $(1,1)$.
(2) [5\%] Find $\frac{d p}{d t}$ if $p=(2 t-5)^{4}\left(8 t^{2}-5\right)^{-3}$.
6. [10\%] Use the linear approximation of the function $f(x)=\sqrt[4]{x+1}$ to estimate $\sqrt[4]{1.02}$.
7. [10\%] Find the absolute maximum and absolute minimum values of the function $f(x)=\frac{x}{x^{2}+1}$ on the interval $[0,2]$.
8. $[20 \%]$ Use the guidelines in the textbook to sketch the graph of the function $y=\frac{x}{(x-1)^{2}}$.
9. $[10 \%]$ Prove that the equation $x^{3}+3 x+2=0$ has exactly one real root.

