FINAL FOR CALCULUS

Time: 8:10-10:00 AM, Friday, June 22, 2001
Instructor: Shu-Yen Pan

No calculator is allowed. No credit will be given for an answer without reasoning.

1. $[10 \%]$ Let $\mathbf{F}(x, y)=x^{3} y^{4} \mathbf{i}+x^{4} y^{3} \mathbf{j}$. Find a function f such that $\nabla f=\mathbf{F}$ and compute the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve $\mathbf{r}(t)=\sqrt{t} \mathbf{i}+\left(1+t^{3}\right) \mathbf{j}, 0 \leq t \leq 1$.
2. [10\%] Use Stoke's theorem to compute the integral $\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}$ and S the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=1$ and above the $x y$-plane.
3. $[10 \%]$ Find the flux of the vector field $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+y^{2} \mathbf{k}$ over the unit sphere $x^{2}+y^{2}+z^{2}=1$.
4. [10\%] Use Green's theorem to find the area enclosed by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

for some $a, b>0$.
5. [10\%] Sketch the solid whose volume is given by the iterated integral

$$
\int_{0}^{2} \int_{0}^{2-x} \int_{0}^{4-x^{2}} d z d y d x
$$

6. $[10 \%]$ Find local maximum and minimum values and saddle points of the function

$$
f(x, y)=x^{2}+y^{2}+x^{2} y+4
$$

7.

(i) Use implicit differentiation to find $\partial z / \partial x$ for $x y^{2}+y z^{2}+z x^{2}=3$.
(ii) Find a unit normal vector of the plane passing through the point $(0,0,1)$ and spanned by the two vectors $\mathbf{i}+\mathbf{j}$ and $\mathbf{j}-2 \mathbf{k}$.
8. [10\%] Find the length of the curve $\mathbf{r}(t)=t^{2} \mathbf{i}+2 t \mathbf{j}+\ln t \mathbf{k}$ for $1 \leq t \leq e$.
9. [10\%] Test the series

$$
\sum_{n=1}^{\infty} \frac{\cos n \pi}{\sqrt{n}}
$$

for absolutely convergence, conditionally convergence or divergence.
10. $[10 \%]$ Let $f(x)=\frac{e^{x}-1}{x}$.
(1) Find the power series representation of f in powers of x.
(2) Differentiate the power series in (1) and show that

$$
\sum_{n=1}^{\infty} \frac{n}{(n+1)!}=1
$$

