FINAL FOR CALCULUS

Time: 8:10-10:00 AM, Friday, January 12, 2000
Instructor: Shu-Yen Pan
No calculator is allowed. No credit will be given for an answer without reasoning.

1. (1) [4\%] Find y^{\prime} for $y=\sqrt{x+\sqrt{x}}$.
(2) [4\%] Is $\frac{d}{d x}\left|x^{2}+x\right|=|2 x+1|$? Why or why not?
2. (1) [4\%] Evaluate $\int e^{x+e^{x}} d x$.
(2) [4\%] Evaluate $\int_{0}^{1} \ln x d x$.
3. (1) [4\%] Differentiating the equation $\tan y=x$ implicitly to find $\frac{d}{d x}\left(\tan ^{-1} x\right)$.
(2) [4\%] One model for the spread of a rumor is that the rate of the spread is proportional to the product of the fraction y of the population who have heard the rumor and the faction who have not heard the rumor. Write a differential equation that is satisfied by y.
4. A spinner from a board game randomly indicates a real number between 0 and 10 . The spinner is fair in the sense that it indicates a number in a given interval with the same probability as it indicates a number in any other interval of the same length.
(1) $[4 \%]$ Explain why the function

$$
f(x)= \begin{cases}0.1, & \text { if } 0 \leq x \leq 10 \\ 0, & \text { if } x<0 \text { or } x>10\end{cases}
$$

is a probability density function for the spinner's values.
(2) [4\%] What does your intuition tell you about the value of the mean? Check your answer by evaluating an integral.
5. [6\%] Find the arc length function for the curve $y=2 x^{3 / 2}$ with starting point $P_{0}(1,2)$.
6. $[6 \%]$ If $\lim _{x \rightarrow 1}(f(x)+g(x))=2$ and $\lim _{x \rightarrow 1}(f(x)-g(x))=6$, find $\lim _{x \rightarrow 1} f(x) g(x)$.
7. [8\%] If f is a positive function and $f^{\prime \prime}(x)>0$ for $a \leq x \leq b$, show that

$$
M_{n} \leq \int_{a}^{b} f(x) d x \leq T_{n}
$$

where M_{n} is the approximation by midpoint rule and T_{n} is the approximation by trapezoidal rule.
8. [8\%] Find A and B given that the function $y=A x^{-1 / 2}+B x^{1 / 2}$ has a minimum value 6 at $x=9$.
9. [8\%] Let f be a one-to-one function and $f^{\prime \prime}(x)$ exists for all x. Let $g=f^{-1}$. Show that

$$
g^{\prime \prime}(x)=-\frac{f^{\prime \prime}(g(x))}{\left(f^{\prime}(g(x))\right)^{3}}
$$

10. [8\%] Show that the area of a sphere of radius r is $4 \pi r^{2}$.
11. [8\%] Find all functions f that satisfy the equation

$$
\left(\int f(x) d x\right)\left(\int \frac{1}{f(x)} d x\right)=-4
$$

12. [8\%] A student forgot the product rule for differentiation and made the mistake of thinking that $(f g)^{\prime}=f^{\prime} g^{\prime}$. However, she was lucky and got the correct answer. The function f that she used was $f(x)=e^{x^{2}}$ and the domain of her problem was the interval $\left(\frac{1}{2}, \infty\right)$. What was the function g ?
13. [8\%] Evaluate $\lim _{x \rightarrow 2}\left(\frac{x}{x-2} \int_{2}^{x} e^{t^{2}} d t\right)$.
