MIDTERM 2 FOR CALCULUS

Date: 2000, June 1, 8:10-10:00AM
Each of the following problems is worth 20 points. An answer without reasoning will not be accepted.
1.
(i) [10\%] Find $\partial z / \partial x$ and $\partial z / \partial y$ for $\ln (x+y z)=1+x y^{2} z^{3}$.
(ii) $[10 \%]$ Find the curvature of the curve $\mathbf{r}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}+\sin t \mathbf{k}$.
2.
(i) $[10 \%]$ Compute the gradient of the function $\frac{r}{\sin r}$ where r is the distance from (x, y, z) to the origin.
(ii) $[10 \%]$ Show that the function

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

does not have limit at $(0,0)$.
3.
(i) $[6 \%]$ Find the equation of the tangent plane for $z=\sin x+\sin y+\sin (x+y)$ at $(0,0,0)$.
(ii) $[14 \%]$ Find the absolute maximum and minimum values of $f(x, y)=e^{-x^{2}-y^{2}}\left(x^{2}+2 y^{2}\right)$ on the disc $x^{2}+y^{2} \leq 4$.
4.
(i) $[10 \%]$ Find the mass and center of mass of solid hemisphere of radius a (i.e., above the $x y$-plane and below the sphere of radius a) if the density at any point is proportional to its distance from the $x y$-plane.
(ii) $[10 \%]$ Find the volume of the solid T enclosed by the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
5.
(i) [10\%] A function $f(x, y)$ is called homogeneous of degree n if f has continuous second-order partial derivatives and $f(t x, t y)=t^{n} f(x, y)$ for all t. Use the chain rule to show that if f is homogeneous of degree n, then

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f(x, y)
$$

(ii) $[10 \%]$ Compute $\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{x^{3}+1} d x d y$.

