MIDTERM 1 FOR CALCULUS

Date: 2000, June 1, 8:10-10:00AM
Each problem is worth 10 points.

1. Suppose that $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \mathbf{b}=-2 \mathbf{i}+3 \mathbf{k}$. Find:
(i) $\mathbf{a} \cdot \mathbf{b}$,
(ii) $\mathbf{b} \times 2 \mathbf{a}$,
(iii) $(\mathbf{b} \times \mathbf{a}) \times \mathbf{b}$,
(iv) $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$,
(v) $\|a\|$.
2.

(i) Let l_{1}, l_{2} be lines that pass through the origin and have direction vectors $\mathbf{d}_{1}=\mathbf{i}+2 \mathbf{j}+4 \mathbf{k}$, $\mathbf{d}_{2}=-\mathbf{i}-\mathbf{j}+3 \mathbf{k}$ respectively. Find an equation for the plane that contains l_{1} and l_{2}.
(ii) Show that $4 \mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}+\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}$.
3. Find the limits:
(i) $\lim _{n \rightarrow \infty} \frac{\sin n}{n}$,
(ii) $\lim _{x \rightarrow e} \frac{\ln (\ln x)}{\ln x-1}$,
(iii) $\lim _{x \rightarrow 0}(\cosh x)^{4 / x}$
(iv) $\lim _{x \rightarrow 0^{+}} \sin x \ln x$.
4.
(i Determine whether $\sum_{k=1}^{\infty}\left(\frac{\ln k}{k}\right)^{k}$ converges or diverges.
(ii) Determine whether $\sum_{k=1}^{\infty}(-1)^{k} \frac{2 \sqrt{k}}{k^{2}+1}$ converges absolutely, converges conditionally or diverges.
5. A nonnegative function f defined on $(-\infty, \infty)$ is a probability density function if

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

(i) Let $k>0$. Show that the function f defined by

$$
f(x)= \begin{cases}k e^{-k x}, & \text { if } x \geq 0 \\ 0, & \text { if } x<0\end{cases}
$$

is a probability density function.
(ii) Let f be defined as in (i). Compute the mean μ given by

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x
$$

6. Find the interval of convergence for

$$
\sum_{k=1}^{\infty} \frac{k^{2}+k}{x^{k}}
$$

7. Evaluate
(i) $\int_{0}^{3} \frac{x}{\left(x^{2}-1\right)^{3 / 2}} d x$,
(ii) $\int_{-\infty}^{1} e^{\left(x-e^{x}\right)} d x$.
8. Let $f(x)=\frac{e^{x}-1}{x}$.
(i) Find the power series representation of f in powers of x.
(ii) Differentiate the power series in (i) and show that

$$
\sum_{n=1}^{\infty} \frac{n}{(n+1)!}=1 .
$$

9. Suppose that the function $f(x)$ is infinitely differentiable on an interval containing 0 , and suppose that $f^{\prime \prime}(x)+f(x)=1$ and $f(0)=1, f^{\prime}(0)=1$. Find the power series representation of f in powers of x. Find the radius of convergence.
10. Let a and b be positive numbers with $b>a$. Define two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ as follows:

$$
\begin{aligned}
a_{1} & =\frac{a+b}{2} \\
b_{1} & =\sqrt{a b} \\
a_{n} & =\frac{a_{n-1}+b_{n-1}}{2} \\
b_{n} & =\sqrt{a_{n-1} b_{n-1}}, \quad \text { for } n=2,3,4, \ldots
\end{aligned}
$$

(i) Use mathematical induction to show that $a_{n-1}>a_{n}>b_{n}>b_{n-1}$ for $n=2,3,4, \ldots$.
(ii) Prove that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

