FINAL FOR CALCULUS

Date: 2000, January 17, 1:10-3:00PM
Each problem is worth 10 points.
1.
(i) At time t, a particle has position

$$
x(t)=1-\cos t, \quad y(t)=t-\sin t
$$

Find the total distance traveled from $t=0$ to $t=2 \pi$. Give the speed of the particle at $t=\pi$.
(ii) Find the area of the surface generated by revolving the curve $y=\cosh x, x \in[0, \ln 2]$ about the x-axis.
2.
(i) Find the tangent(s) to the curve

$$
x(t)=-t+2 \cos \frac{1}{4} \pi t, \quad Y(t)=t^{4}-4 t^{2}
$$

at the point $(2,0)$.
(ii) Find the area of the region common to the circle $r=2 \sin \theta$ and the limaçon $r=\frac{3}{2}-\sin \theta$.
3.
(i) Verify that $\sinh 2 t=2 \sinh t \cosh t$.
(ii) Compute $f^{\prime}(x)$ where $f(x)=x^{2 x}$.
4.
(i) Two years ago, there were 4 grams of a radioactive substance . Now there are 3 grams. How much was there 10 years ago?
(ii) Determine the exact values of $\sec ^{-1}(-\sqrt{2})$ and $\sin ^{-1}(\sin 7 \pi / 4)$.
5.
(i) Let f be continuous and define F by

$$
F(x)=\int_{0}^{x}\left[t^{2} \int_{1}^{t} f(u) d u\right] d t
$$

Find $F^{\prime}(x)$ and $F^{\prime \prime}(x)$.
(ii) Compute the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos 4 x}{9 x^{2}}
$$

6. Sketch the graph of the continuous function f that satisfies the conditions:
$f^{\prime \prime}(x)>0$ if $|x|>2, f^{\prime \prime}(x)<0$ if $|x|<2$;
$f^{\prime}(0)=0, f^{\prime}(x)>0$ if $x<0, f^{\prime}(x)<0$ if $x>0$; $f(0)=1, f(2)=\frac{1}{2}, f(x)>0$ for all x, and f is an even function.
7. Evaluate the given integral
(i)

$$
\int x(x+1)^{9} d x
$$

(ii)

$$
\int \frac{\cos \theta}{\sin ^{2} \theta-2 \sin \theta-8} d \theta
$$

8.

(i) Evaluate the integral

$$
\int \frac{d x}{e^{x} \sqrt{4+e^{2 x}}}
$$

(ii) Show that the polynomial $p(x)=x^{3}+a x^{2}+b x+c$ has no extreme values if and only if $a^{2}<3 b$.
9. Show that, if u and v are differentiable functions of x and f is continuous, then

$$
\frac{d}{d x}\left[\int_{u}^{v} f(t) d t\right]=f(v) \frac{d v}{d x}-f(u) \frac{d u}{d x}
$$

Then compute

$$
\frac{d}{d x}\left[\int_{x}^{x^{2}} \frac{d t}{t}\right]
$$

10.

(i) Use mean value theorem to show that, if f is continuous on $[x, x+h]$ and differentiable on $(x, x+h)$, then

$$
f(x+h)-f(x)=f^{\prime}(x+\theta h) h
$$

for some number θ between 0 and 1 .
(ii) Let $h>0$. Suppose that f is continuous on $[a-h, a+h]$ and differentiable on $(a-h, a) \cup(a, a+h)$. Use (i) to show that if

$$
\lim _{x \rightarrow a^{-}} f^{\prime}(x)=\lim _{x \rightarrow a^{+}} f^{\prime}(x)=L
$$

then f is differentiable at a and $f^{\prime}(a)=L$.

