Linear Algebra II, Midterm, Yung-fu Fang, 2010/11/09

Show All Work

1. (a) State the test for diagonalization.
(b) State the Cayley-Hamilton Theorem.
(c) State the Gram-Schmidt Process.
(d) State the Schur Theorem.
2. Let $T: P_{2}(R) \rightarrow P_{2}(R)$ defined by $T(f(x))=f(x)+(x+1) f^{\prime}(x)$. Show that T is diagonalizable and find the matrices Q and D such that $Q^{-1} A Q=D$.
3. Let $T: R^{2} \rightarrow R^{2}$ be the rotation by θ. Prove that T is a linear operator. Is T diagonalizable? Explain!
4. Let $B_{1} \in M_{k \times k}(F), B_{2} \in M_{k \times(n-k)}(F)$, and $B_{3} \in M_{(n-k) \times(n-k)}(F)$. Show that

$$
\operatorname{det}\left(\begin{array}{cc}
B_{1}-t I_{k} & B_{2} \\
0 & B_{3}-t I_{n-k}
\end{array}\right)=\operatorname{det}\left(B_{1}-t I_{k}\right) \operatorname{det}\left(B_{3}-t I_{n-k}\right) .
$$

5. Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Define $\bar{T}: V / W \rightarrow V / W$ by $\bar{T}(v+W)=T(v)+W$ for any $v+W \in V / W$. Show that if both T_{W} and \bar{T} are diagonalizable and have no common eigenvalues, then T is diagonalizable.
6. Let V be a finite-dimensional inner product space with an orthonormal ordered basis $\beta=$ $\left\{v_{1}, \cdots, v_{n}\right\}, T$ a linear operator on V, and the matrix $A=[T]_{\beta}$. Prove that, for all i and j, $A_{i j}=<T\left(v_{j}\right), v_{i}>$. Give a direct proof.
7. Let $\|\cdot\|$ be a norm on a real vector space V satisfying the parallelogram law,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

Define

$$
<x, y>=\frac{1}{4}\left[\|x+y\|^{2}-\|x-y\|^{2}\right] .
$$

Show that
(a) $\langle x, 2 y\rangle=2<x, y>$, for all $x, y \in V$.
(b) $\langle x+u, y\rangle=\langle x, y\rangle+\langle u, y\rangle$, for all $x, u, y \in V$.
8. Let $A \in M_{m \times n}(F)$ and $b \in F^{m}$. Suppose that the system of equations $A x=b$ is consistent.
(a) Prove that $R\left(L_{A^{*}}\right)^{\perp}=N\left(L_{A}\right)$.
(b) Prove that the minimal solution s to $A x=b$ is in $R\left(L_{A^{*}}\right)$.
(c) Find the minimal solution to $\left\{\begin{array}{l}x+2 y-z=1, \\ 2 x+3 y+z=2, \\ 4 x+7 y-z=4 .\end{array}\right.$
9. Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Show that V has an orthonormal basis of eigenvectors of T. Hence that T is self-adjoint.

