Linear Algebra II, FINAL, Yung-fu Fang, 2011/01/10

Show All Work

1. (a) State some sufficient and necessary conditions for A or T being diagonalizable.
(b) State the definition of Pseudoinverse.
(c) State the Singular Value Decomposition.
(d) State the definition of a vector space.
(e) State the definition of an inner product.
(f) State the Cayley-Hamilton Theorem and the definition of minimal polynomial.
2. Let $\left\{u_{1}, u_{2}, u_{3}\right\}$ be a set of linearly independent vectors in an inner product space. Use the Gram-Schmidt Process to compute the orthogonal vectors $\left\{v_{1}, v_{2}, v_{3}\right\}$. Then normalize these vectors. [10\%]
3. Let $T: R^{2} \rightarrow R^{2}$ be the rotation by θ. Prove that T is a linear operator. Is T diagonalizable? Explain!
4. Let T be a normal operator on a finite-dimensional complex inner product space V. Use the spectral decomposition $T=\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}$ to prove that there exists a normal operator U on V such that $U^{2}=T$.
5. Let V and W be finite-dimensional inner product spaces. Let $T: V \rightarrow W$ and $U: W \rightarrow V$ be linear transformations such that $T U T=T, U T U=U$, and both $U T$ and $T U$ are self-adjoint. Prove that $U=T^{\dagger}$
6. Find the singular value decomposition and A^{\dagger} for $A=\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & 1 & -1\end{array}\right)$.
7. Let $A \in M_{3 \times 3}$ and diagonalizable with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and eigenvectors v_{1}, v_{2}, v_{3} Find $A=Q D Q^{-1}$ and $A=U \Sigma V^{*}$. Express the matrices Q, D, U, Σ, and V in terms of $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and v_{1}, v_{2}, v_{3}.
8. Let A be a 2×2 matrix. Let $\lambda \in R$ and $\xi \in R^{2}$ such that $(A-\lambda I) \xi=0$. Suppose that the null space of $A-\lambda I$ is 1 -dimensional and $(A-\lambda I)^{2}$ is a zero matrix. Show there is a vector $\eta \in R^{2}$ such that $(A-\lambda I) \eta=\xi$. Show that $\beta=\{\xi, \eta\}$ is an ordered basis for R^{2}. Find $\left[L_{A}\right]_{\beta}$. Find the matrices Q and J such that $A=Q J Q^{-1}$.
9. Let $A=\left(\begin{array}{ccc}3 & 1 & -2 \\ -1 & 0 & 5 \\ -1 & -1 & 4\end{array}\right)$. Find a Jordan Canonical Form for A and the minimal polynomial of A
